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Abstract

We present two modifications of the Flux Balance Analysis (FBA) metabolic modeling 

framework which relax implicit assumptions of the biomass reaction. Our flexible Flux Balance 

Analysis (flexFBA) objective removes the fixed proportion between reactants, and can therefore 

produce a subset of biomass reactants. Our time-linked Flux Balance Analysis (tFBA) simulation 

removes the fixed proportion between reactants and byproducts, and can therefore describe 

transitions between metabolic steady states. Used together, flexFBA and tFBA model a time scale 

shorter than the regulatory and growth steady state encoded by the biomass reaction. This 

combined short-time FBA method is intended for integrated modeling applications to enable 

detailed and dynamic depictions of microbial physiology such as whole-cell modeling. For 

example, when modeling Escherichia coli, it avoids artifacts caused by low-copy-number 

enzymes in single-cell models with kinetic bounds. Even outside integrated modeling contexts, the 

detailed predictions of flexFBA and tFBA complement existing FBA techniques. We show 

detailed metabolite production of in silico knockouts used to identify when correct essentiality 

predictions are made for the wrong reason.
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1. Introduction

Quantitative metabolic models are important tools for understanding and engineering the 

behavior of microorganisms. Flux Balance Analysis (FBA) is a powerful technique to 

simulate large metabolic networks for which kinetic parameters are unavailable. FBA 

simulations capture microorganism growth, nutritional resource consumption, and waste-

product secretion rates [1, 2]. In addition FBA can generate knockout essentiality 
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predictions which can be treated as hypotheses to explore an organism's metabolic capability 

[3, 4].

Classical implementations of FBA quantify microbial growth using a rigid biomass reaction 

which represents all the processes of cell replication as a single proportion of the reactants 

required and byproducts returned. It is used to quantify microbial growth even when another 

objective is used to refine flux predictions or evaluate perturbations [5, 6, 7].

The biomass reaction can produce only balanced growth or complete inactivity as 

predictions. For many applications the assumptions underlying this all-or-nothing behavior 

have been valid and the results have been useful. However, current in silico biology 

incorporates FBA in integrated models which combine mathematical models of different 

types to interact over a simulation [8, 9]. For these applications — most notably whole-cell 

models [10] — the rigid biomass reaction is a limitation.

To enable whole-cell modeling, we require a more nuanced alternative to the biomass 

reaction so that FBA can produce metabolites in non-wild-type and non-steady-state 

proportions.

In this work, we relax two implicit assumptions of the biomass reaction to construct new 

FBA methods. The first assumption is of balanced population average growth, encoded by 

the biomass reaction's fixed proportion of reactants. The second assumption is of steady 

state growth, encoded by the biomass reaction's fixed proportion of byproducts to reactants. 

Relaxing the reactant and byproduct assumptions results in the flexible FBA (flexFBA) and 

time-linked FBA (tFBA) approaches, respectively.

Together, the balanced and steady-state growth assumptions inherent to biomass reaction in 

FBA make the method applicable to a timescale longer than regulatory and cell process 

interactions. By combining the flexFBA and tFBA methods which relax these assumptions, 

we obtain a short-time FBA appropriate to use in whole-cell models. This short-time scale is 

consistent with whole-cell models which evaluate the metabolic model on timescales shorter 

than the regulatory and process interactions they explicitly represent.

1.1. Biomass Reaction and Assumptions

The biomass reaction is ubiquitous in microbial FBA because it lends great predictive power 

to the under-constrained metabolic network. It has a succinct mathematical form and is 

composed of straightforward parameter values. In addition to quantifying growth, the 

biomass reaction flux is often used as an optimization objective and in this case may be 

called the `biomass objective' [11]. Much literature evaluates the ability of various FBA 

objectives to mimic observed growth, gene essentiality, or flux states [6, 12, 13, 14, 15], 

often in comparison to `biomass objective' performance. In contrast, here we discuss 

simulation regimes in which the biomass reaction does not adequately model the range of 

metabolic network function, and is no longer relevant as a quantification of growth.
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By constraining together all process reactant requirements and byproduct returns the 

biomass reaction combines the two subtly different assumptions that deal with the (1) 

reactant-to-reactant and (2) byproduct-to-reactant groups.

Reactant-to-reactant fixed proportion in the biomass reaction assumes population average 

balanced growth: homogeneity between cells and within cells over time. This assumption is 

contained in the biomass reaction's negative coefficients. As a consequence, the biomass 

reaction scales the fractional fulfillment of all process reactants to whichever one is most 

limited. Homogeneity between cells arises from the biomass reaction because its coefficients 

are bulk cell composition values. For single cells and short timescales this homogeneity 

conflicts with biological reality. Bulk phenotypes are given by an average and neglect 

variance in the underlying population [16, 17]. Strict temporal homogeneity of metabolite 

production ratios is unreasonable because the transcriptional and translational regulatory 

mechanisms which could enforce it operate on timescales longer than the typical FBA time 

step (1 sec to a few minutes [18, 19]). Furthermore, regulatory interactions may not exist 

between all metabolites included in the biomass reaction to enforce their proportional 

production. Experimental observations reveal that even essential metabolites can be 

produced in non-wild-type proportions [20, 21, 22, 23]. Additionally, all metabolites 

included in the biomass reaction are essential for model growth. If the biomass reaction 

includes process reactants which are non-essential for cell replication, then false-essential 

predictions will result [24]. Previously, the inflexible ratio and essentiality of the biomass 

reaction have been addressed via alternate biomass reaction definitions, [24, 25] or reactions 

allowing similar metabolites to substitute for one another [26]; though these approaches are 

not practical for the entire scale or all pathways of metabolism.

Byproduct-to-reactant fixed proportion in the biomass reaction assumes steady state 

metabolic function. This assumption is contained in biomass reaction's positive coefficients. 

The principle example is the return of spent energy carrier ADP set proportional to the 

amount of ATP produced within a time step. Proportional byproducts to reactants means the 

ADP return is immediately matched to the capacity of metabolism to recharge it to ATP, 

rather than being consistent with the previous time step's metabolic conditions. Relating the 

reactant and byproduct quantities is reasonable, but a long-time assumption is implied within 

a single evaluation of the FBA optimization. Perturbations or changes in available media 

resources therefore result in immediate transition to a new steady state in the single time step 

at which they are applied. This type of transition is unrealistic for short time step evaluations 

or if the energy carrier supply or turnover is limited.

2. Methods

Mathematically the biomass reaction consists of coefficients mi of metabolites Mi appended 

as a single reaction column to the stoichiometric matrix S as in the equation,
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(1)

where values mi < 0 represent consumption of process reactants, and mi > 0 represent 

byproduct return. A majority of the n total mi values are zero because the associated 

metabolites do not participate in cell processes beyond metabolism. Coefficient magnitudes 

for anabolic products are given by relative quantities found in bulk biomass [11]; Coefficient 

magnitudes in the case of catabolic energy carriers are given by requirements for 

macromolecule synthesis or calculated from bulk yields [11]. Units of mi are usually chosen 

so that the flux through the biomass reaction, the last element of flux vector v denoted vbio, 

can be directly interpreted as a microbial growth rate [1]. Metabolite accumulation  is 

set to zero [1], applying the steady state assumption to metabolic network intermediates on 

the timescale of evaluation Δt, typically 1 s or longer. Using the biomass reaction flux as the 

maximization objective, the optimization problem is:

(2)

where S′ = [S | m] and v′ is vbio appended to the end of v as in Equation 1.

Because the coefficients mi are quantities required for some basis amount of cell mass, we 

find it convenient to think of the biomass reaction flux vbio as the fractional fulfillment of 

that requirement per time. The classical FBA biomass reaction therefore requires the 

fractional fulfillment of all the metabolite requirements to be the same.

2.1. Designing a Biomass Reaction Alternative

While we sought to relax the biomass reaction's assumptions, we wanted to simultaneously 

preserve its behavior in the wild-type and long-time limits. We developed flexFBA to 

produce all possible process reactants without inhibition from distant/unrelated blocked 

pathways while maintaining the population average cell composition for wild type networks. 

We developed tFBA to allow observation of transient behavior and integration with other 

biological process models while reproducing steady state growth. An additional design 

constraint was the need for integrated modeling methods to be computationally efficient and 

function without human supervision.
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Neither flexFBA nor tFBA rely on or interfere with each other, so they can be implemented 

separately or together. We therefore treat them individually in initial methods explanation 

and evaluation. However, because flexFBA and tFBA relax separate long-time assumptions 

of the biomass reaction, only by implementing them together do we achieve short-time FBA 

suitable for use in whole-cell models.

2.2. Reactant Flexibility: flexFBA

As long as the process reactants participate in the same reaction they must be provided by 

the network at rates related by a nonzero constant multiplier. To remove this constraint and 

produce them independently, we append their coefficients in separate reactions to the 

stoichiometric matrix:

(3)

where the fluxes corresponding to each of these reactions fi appended to v, still intuitively 

represent the fractional fulfillments of the requirement for metabolites by processes, but they 

can now vary from one another. We will call the combined matrix of Equation  and the 

combined vector . The blocks appended to S are square diagonal in the general forms of 

Equations 3 and 5, the many all-zero columns are neglected in practical use.

The objective criteria applied must incentivize process reactant metabolite production — 

large values of fi — and simultaneously encourage proportional production — similar values 

of fi. In the wild type case, such an objective will result in process reactant exchange to and 

from the metabolic network identical to the biomass reaction flux maximization case in 

Equation (2). We achieve this mathematically using the objective,

(4)

where fatp is the fractional fulfillment of energy carrier ATP. It maximizes the fractional 

fulfillment of ATP while penalizing any metabolite produced less than proportionally to 

ATP. The weight γ applied to penalty terms is a constant, which we explain how to choose 

later. Figure 1a compares biomass reaction flux maximization to the flexible form.

The ℓ1 norm penalty encourages sparsity in its arguments; incentivizing that most fi match 

fatp rather than drawing all fi towards those that are constrained to be low. Similar 

motivations for ℓ1 norm use are found in robust and regularized regression [27, 28]. In 

contrast, the ℓ2 norm does not penalize small errors, and draws the solution towards outliers. 
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We also found the ℓ2 norm is less numerically stable, failing to give reliable results for the 

metabolic system.

ATP production fatp is used as a representative of metabolic function, based on its biological 

importance and large process requirement mi. Including ATP explicitly in the objective is 

also consistent with previous FBA implementations which include ATP rate or yield in the 

optimization criteria or maintenance energy flux constraints [6]. Alternatives to this choice 

include functions of fi values such as the mean, but these are prone to trade-offs between 

metabolites, especially due to the eight orders of magnitude spanned by the values of mi.

We additionally introduce the constraint that fatp ≥ fi, resulting in the simplification to 

difference penalty terms. However, this constraint is optional and ℓ1 norm penalties could be 

used in subsequent equations instead. Because the ATP coefficient mATP is based on bulk 

yield measurements it accounts for some of the thermodynamic inefficiencies of 

metabolism, which we have chosen to maintain strictly with the fatp ≥ fi constraint. We 

include an optional full biomass reaction flux with weight β in the optimization criteria, so 

the full problem is,

(5)

The biomass group term gbio, if it is included with su ciently large β, assures that no 

metabolite is produced less than it would be using biomass reaction FBA. Including the 

biomass group alters the exFBA simulation only when a pathway is partially restricted 

upstream of a branch to multiple process reactant metabolites, as we discuss subsequently. 

The problem in Equation 5 can be forced to the biomass reaction solution by further setting 

0 ≤ gbio = fi.

Basic flexFBA simulation results are shown in Figure 1b with identical metabolite 

production to biomass reaction FBA for the wild-type network. When glycogen synthesis 

capacity is removed by a simulated gene knockout, the biomass reaction predicts no 

metabolite production, while flexFBA predicts full wild type level production of all 

metabolites except glycogen.

Simulations in Figure 2 exemplify the contribution of the full biomass group gbio term. 

Pathway restriction makes the metabolic precursor of tyrosine and phenylalanine a limited 

resource. E. coli biomass contains slightly greater amounts of phenylalanine than tyrosine 

(mtyr < mphe), with 57% of the flux to the branch point heading to phenylalanine. The 

process requirement for tyrosine being smaller means each increment of fractional 

fulfillment is less costly in terms of the limited precursor so the flexible terms (fatp with 

penalty Equation (4) alone would produce ftyr > fphe. The biomass group incentivizes 

proportional production to the extent that its flux is permitted: ftyr = fphe in the single 

knockdown (left two columns). This contribution is limited by any other restricted process 
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metabolites, just as the biomass reaction would have been. We see the preference of 

flexFBA for the smaller requirement downstream of a restricted branch when the biomass 

group is additionally constrained — in Figure 2 by a glycogen pathway restriction with the 

double knockdown (right two columns, Figure 2).

The addition of βgbio the flexible objective is only one of many ways to increase fi similarity 

among subsets of the process metabolites. Mathematically these terms could positively 

weight group production as with the biomass group term. Taking as an example the reactants 

of DNA synthesis, this would entail adding the βdNTPgdNTP to the maximization criteria and 

the constraint gdNTP ≤ fj for j = {dATP, dTTP, dGTP, dCTP} to the problem of Equation 5. 

Similarly, deviations within the group could be penalized using a form like the flexible 

objective itself, or a strict limit imposed on members fj ≤ mink fk, for j, k = {dATP, dTTP, 

dGTP, dCTP}. These additional terms could apply the assumption with varying strictness 

that molecular interactions maintain proportion between these metabolites on the timescale 

of FBA evaluation. However, assigning groups and weighting their terms increases the 

parameterization and potentially complicates the optimization problem. We consider current 

experimental evidence insufficient to guide or justify including such groups generally.

2.3. Time-Linked Byproducts: tFBA

Biomass reaction FBA can represent only the steady states of growth and not the transients 

between those steady states. This limitation is because process byproducts are returned from 

the reactants provided to processes within the same optimization time step. In tFBA the 

byproducts from time step t are available to the metabolic network at time step t + Δt With 

this modification we remove the long term steady state assumption from the biomass 

reaction.

Additional motivation for tFBA is that to construct integrated models it is advantageous to 

separate process reactant requirements and byproduct return. The biomass reaction can be 

thought of as an integrated model lumping all cell processes together. Because the biomass 

reaction is expressed as a single linear equation, it can be included in the linear system for 

optimization. However, it is not possible to represent processes of differential equation form, 

and especially stochastic processes, within the framework. Once it is required to evaluate 

FBA optimization and process models separately, the simulation must include methods to 

assure a metabolic solution exists and the overall simulation conserves mass — to keep 

processes and metabolism consistent. A former solution to maintaining process-metabolism 

consistency while preserving byproduct-to-reactant ratio within an FBA optimization 

required multiple evaluations of each for every simulated time step. We applied this solution 

to FBA integrated modeling in Birch et al. 2012 [8], however it is computationally 

inefficient, prone to time step dependent artifacts, and would be very problematic for 

stochastic models. The preferable alternative is tFBA: process-metabolism consistency can 

be enforced with straightforward metabolite quantities by separating process reactant 

consumption and byproduct return to occur between time steps.

The biomass reaction summarizes many molecular steps which may share reactants and 

byproducts, so mi summarizes a reactant and byproduct stoichiometric coefficient ri and pi 
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respectively: mi = pi + ri, with ri < 0 and pi > 0. In tFBA we replace mi with the reactant 

coefficient ri in the reactions appended to the S matrix,

(6)

where separate exchange reactions xi for the process byproducts have been added, and the 

matrix and flux vector are denotedŜ and v̂. The bounds for byproduct exchanges xl ≤ x ≤ 0 

set only for uptake, and based on the available byproduct metabolite returned by the 

processes at the prior time step. In the case that a simple proportionality is still used to 

represent processes, at steady state in the wild type network these exchange reactions will 

have flux bounds and values of xi = xl,i – pif where f is the fractional fulfillment of all 

metabolites at this steady state. For during transient metabolic states the bounds xl,i will 

depend on ci,j, and fj,(t–Δt) the fractional fulfillment of related reactant Mj from the previous 

time step. Note that we maintain the FBA steady state assumption with respect to metabolic 

intermediates, which addresses an intermediate timescale between the fluctuations in 

metabolite concentrations to which enzyme-small molecule interactions respond quickly, 

and the longer regulatory responses. The full optimization problem statement for tFBA is:

(7)

where in this case the flexFBA is also being used. To implement tFBA but retain fixed 

proportion of reactants the last constraint of Equation 7 becomes 0 ≤ gbio = fi.

To present the impact of the tFBA method on simulations, we compare it to the previous 

methods for generating FBA time courses. Such methods consist of updating media 

concentrations based on the resources consumed during discrete time steps, with the most 

thorough accounting called dynamic FBA (dFBA) from Mahadevan et. al. 2002 [2]. Such 

simulations capture organism growth rate shifts in the time step after one of the resources is 

exhausted. However, at each time step growth is steady state with respect to the biomass 

reaction, so the resulting time course is a sequence of growth steady states. Figure 3a and b 

illustrate the reactant-byproduct relationship for a time course of biomass reaction FBA 

steady states, and tFBA, respectively. Upon a change in conditions, biomass reaction FBA 
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byproduct return is already informed by the new conditions — which is why the arrow from 

reactants to byproducts in Figure 3a appears reversed with respect to time — and 

immediately achieves steady state. In comparison, tFBA byproduct return is a function of 

reactant consumption at the previous time step and condition. As a result, it transitions over 

some number of evaluations to the new steady state. At steady-state growth, time steps are 

identical so the same result is obtained at the long time limit.

Figures 3c and d show process reactants and byproducts across an example transition from 

acetate to glucose media conditions for biomass reaction FBA and tFBA simulations. 

Transition time is not the only distinction, as tFBA also accounts for the difference in 

resources needed to maintain the states. In the E. coli network purine energy carriers ATP 

and ADP are the most important example. Using biomass reaction FBA, one of the 

modeling assumptions is that additional ADP are assumed to exist as soon as they can be 

phosphorylated in the glucose media condition, whereas tFBA simulation includes synthesis 

of these additional purine molecules via the metabolic network. The higher glucose growth 

rate requires twice the number ATP plus ADP to sustain [29], and it is certainly preferable to 

account for the resources used in their synthesis. Because Figure 3 simulations employ the 

wild type network and necessary media resources are available to produce balanced growth, 

either flexFBA or the biomass reaction objective will produce the results shown.

We note here that the quantities of reactants and byproducts exchanged between metabolism 

and the processes will not be representative of physiological metabolite concentrations. 

These quantities are an accounting practicality of representing discrete metabolic steps and 

cell function beyond linear system representation. However, the variables at this 

metabolism-process interface provide an opportunity for further methods development in 

FBA and whole-cell modeling fields.

2.4. Implementation

The genome scale metabolic model used for all main text figures is a slight expansion on 

iMC1010 [30]. Text files used for the reaction network and other modeling information are 

included with the code associated with this publication. Kinetic bounds and reaction 

perturbations are included in source code. Simulations were implemented in Python, with 

linear programming completed using CVXOPT [31] and GLPK or MOSEK. Source code for 

simulation and figure generation is available at simtk.org/home/flexfbatfba.

Simulations of in silico knockouts entail setting the associated reaction flux constraints vl = 

vu = 0. For tFBA simulations, use of process byproduct protons by metabolism was required. 

Fluxes are accounted in our simulations on a per cell rather than on a per gram dry cell 

weight basis, and are displayed as such unless otherwise noted. If β is nonzero we hold its 

value large, β ≫ 1.

The weighting of penalty terms must be 0 < γ < 1 for the production of any biomass 

metabolites other than ATP, with some tighter lower and upper bounds depending on the 

metabolic network and biomass metabolite count (theoretically γ ≥ 1 is feasible but 

practically interferes with solver). For all main text simulations in this work a value of 0.1 

was used, chosen based on the total count of process reactants terms to avoid solution 
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convergence to the biomass reaction limit. An analysis of metabolite production sensitivity 

to γ (Supplementary Figure S1) shows that the value can be chosen which produce the 

desired qualitative flexFBA solution, robust to various conditions and with multiple 

perturbations. Figure S1 includes simulations over a physiologically reasonable range of 

growth conditions, and with a range of metabolites constrained to low production.

3. Results

3.1. Knockouts

Using combined flexFBA and tFBA to achieve a short-time FBA, we can simulate the 

metabolic network in dynamic response to an in silico gene knockout perturbation. When we 

applied such knockouts, we observed two broad types of simulation results, examples of 

which are presented in Figure 4.

Many knockouts converge almost immediately to steady state, as in Figure 4a. An example 

is pgsA which catalyzes a step in the synthesis of E. coli membrane components cardiolipin 

and phosphatidylglycerol. Immediately upon constraining the pgsA flux to zero, the 

associated process reactant production is zero (top left Figure 4a) and this continues in the 

long time limits (top right Figure 4a). Meanwhile, all unrelated biomass reactants and 

byproducts continue to be produced (bottom left and right Figure 4a). Lack of cardiolipin 

and phosphatidylglycerol in the pgsA knockout simulation is consistent with experimental 

evidence where this strain has been shown to lack these two membrane components [32] and 

survive under some conditions.

A smaller group of knockouts display qualitatively different metabolite synthesis 

immediately upon and long after perturbation, as exemplified by purA in Figure 4b. Flux 

through the reaction towards de novo purine synthesis is set to zero, but in the short term 

purines are still provided to the processes (top right Figure 4b). Continued purine 

availability is due to tFBA purines being returned from the previous step as byproduct spent 

energy carrier ADP. Long-term gradual decrease occurs because at each time step a few of 

the returned purines are sequestered in cell macromolecules as RNA and `soluble pool' 

maintenance — mathematically mamp + matp < −madp — so without the ability to synthesize 

adenosine from small molecule nutrients the free amount declines (top right Figure 4b). 

Based on the flexFBA constraint fm < fatp, which represents the biological dependance of all 

metabolic activity on ATP, all other biomass reactants decrease proportionally (bottom left 

and right Figure 4b). Experimentally, purA knockouts are purine auxotrophs [33], consistent 

with the flexFBA and tFBA phenotype predictions.

The flexFBA and tFBA techniques allow us to compare knockout simulations to experiment 

for each metabolite individually, rather than with the binary essential/non-essential gene 

classifications of biomass reaction FBA. Previously, such detailed predictions would have 

been possible only in part and only by testing media supplements over many simulations, or 

with computational searches of the FBA solution space [34]. Figure 5 emphasizes the 

increase in prediction detail with our techniques by summarizing results like those in Figure 

4. In Figure 5, genes knocked out computationally are true-essential predictions for glucose 

minimal media from Feist et al. 2007 [24]. Process reactant absence is indicated by dark 
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shading of that metabolite, short-term as fill and long-term as border. We contrast these 

results with the analogous biomass reaction results (small grids at top Figure 5): using the 

biomass reaction no useful detail is contained in the completely shaded grid (right Figure 5).

We can now make graded assessments of metabolic network predictions. A knockout has 

historically been called true-essential if the biomass reaction flux value is below some 

threshold for a gene found experimentally necessary for growth. These true-essential 

matches are considered a metric for the quality of metabolic network reconstructions. 

However, it provides no information about whether the prediction is correct for the relevant 

biological reason. We compared literature information to flexFBA metabolites absences in 

Figure 5, and indicate agreement by color (associated references in Table S1). The strains 

missing one or more biomass metabolites are analogous to auxotrophs, and for most of these 

experimental literature confirms that media must be supplemented with the metabolites 

unavailable in simulation or precursors. For genes where experimental evidence was 

consistent with the in silico phenotype, but it was not expected for the critical components to 

exchanged with the media, we assigned an `other agreement' classification. The `other 

agreement' group consists of mostly membrane components, electron transport chain 

enzymes, and nucleotide kinases.

Shown by the pie inset of Figure 5, the majority of true-essential predictions occur from 

biologically relevant consequences in the metabolic network. This agreement means that our 

detailed results are largely consistent with the accuracy classification implied by the `true' of 

true-essential biomass reaction predictions. 14 metabolic phenotypes were found in at least 

partially inconsistent with biochemical and genetic evidence. These phenotypes include 

cases in which FBA made technically correct predictions of essentiality, but with faulty 

reasoning. One example is the metK knockout for which spermidine synthesis is blocked in 

silico, preventing any biomass reaction flux. The zero biomass reaction flux is the traditional 

FBA prediction that metK is an essential gene, which matches with metK essentiality found 

experimentally. However, the metK knockout is not lethal because of spermidine absence, as 

strains have been isolated without the polyamines [35]. Instead, the reason a metK knockout 

is lethal involves the production of critical cofactors required for methionine biosynthesis 

[36]. These cofactors are used in cycles, which means that FBA can `balance' the fluxes 

even though the cofactors are never produced. Our new approach allows us to resolve the 

discrepancy between biochemical evidence and the in silico phenotype, whereas the 

previous FBA methods claimed a correct prediction. The folA knockout prediction is an 

analogous case to metK; serA, serB, and serC knockouts demonstrate the opposite 

phenomena wherein cycles which are possible for FBA but not in cells are disrupted. A 

number of these incorrect predictions involve cofactor cycling, among them folA and metK 

knockouts are both able to produce metabolites whose synthesis is in reality prevented. In 

the cases of serA, serB, and serC knockouts the balance of interconversion between acetyl-

CoA and CoA is perturbed, to which FBA is apparently more sensitive than metabolism in 

vivo.
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3.2. Expression Bursts

Figure 6 compares the results of our short-time FBA to biomass reaction simulations in the 

case of enzyme copy number fluctuations in a single cell. Some process reactant metabolites 

are required by the cell in small amounts, and the enzymes that produce them exist on the 

order of tens per cell. Increasingly, FBA approaches are refined with the addition of 

enzymatic parameters in bounds calculation [14], for example using protein counts and 

turnover number to constrain internal network fluxes [10]. For kinetic flux bounds to be 

applied in single cell integrated models, flexFBA is required to avoid biomass reaction 

artifacts from low copy number enzymes.

Coenzyme A (CoA) is the small process requirement metabolite example for Figure 6 

simulations, with total inclusion in biomass alone and as acetyland succinyl-CoA being six 

orders of magnitude smaller than the process requirement for ATP. An essential step in CoA 

synthesis is performed by coaBC, which is observed at an average of less than twenty per 

cell, produced from two or three transcription events per cell cycle [16]. We input an 

approximation of coaBC expression by translational bursts, which informs kinetic bounds on 

CoA synthesis shown in Figure 6a and b, compared to kinetic bounds which smoothly 

increase according to a population average. The biomass reaction and flexFBA predictions 

for CoA synthesis rate are similar, both being restricted while kinetic bounds for the single 

cell are lower than smooth population average (Figure 6a and b). The difference is when 

CoA synthesis is constrained below the smooth level, using the biomass reaction, all process 

reactant metabolite synthesis is also constrained (Figure 6c), whereas it is unperturbed by 

CoA limits using flexFBA (Figure 6d). Biomass reaction accumulation of macromolecular 

precursors is lowered by the periods of restriction. This deficit is seen as slightly lower 

fluxes compared to the smooth case even when coaBC enzyme is not limiting.

4. Discussion and Conclusions

We have constructed an FBA objective which is able to produce subsets of process 

reactants, and reproduces the traditional biomass production in the wild-type network case. 

In addition, our time-linked simulations allow us to observe transitions between FBA steady 

states. Critically, the methods satisfy the requirement for quick unsupervised operation such 

that they can be used in integrated modeling applications, and do so using off-the-shelf and 

open-source optimization packages. Furthermore, flexFBA functions robustly with the 

single added adjustable parameter of penalty term weighting γ. An additional strength is that 

as the penalty weighting approaches one the question asked converges from `whatever 

metabolism can make' to the to the classic population survival assessment.

The detailed results of flexFBA and tFBA in silico knockout predictions offer a new 

window into metabolic reconstructions. Correctness or incorrectness of essentiality and 

metabolic phenotype predictions are properties of the metabolic reconstruction and gene 

associations. What our methods make possible is to identify when correct predictions are 

made for the wrong reason, indicating a problem with the metabolic reconstruction. 

Identification of erroneous true-essential predictions is important as they may cause 

problems within other applications of FBA. For example, in metabolic engineering design 

these could lead to misguided computational suggestions for strain development efforts.
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Our short-time FBA is necessary to avoid artifacts as we apply FBA at the short-time scale 

single-cell level with enzyme count and kinetic parameters as constraints. Using the biomass 

reaction, models predict that a cell constrains these distant pathways, including large fluxes 

catalyzed by high copy number enzymes, to match the transcriptional fluctuations of a single 

rare protein. On one second timescales, such a strict constraint is unreasonable both from an 

evolutionary perspective and from our mechanistic understanding. Furthermore, in the 

coaBC example we saw the impact of only one reaction limited by an enzyme produced in 

bursts, whereas many exist and, in simulation simultaneously, would result in even more 

dramatic limitation. Our methods introduce the first FBA solution that avoids propagating 

low copy enzyme bounds implausibly.

The biomass reaction previously limited application of genome scale stoichiometric 

metabolic models to population average and steady state growth. FlexFBA and tFBA 

together bring the relevant timescale to an intermediate range which will allow us to 

represent more cell physiological detail. The combined short-time FBA will be instrumental 

in whole-cell simulations and understanding the heterogeneity that underlies many critical 

phenomena in microbiology.
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Highlights

The rigid Flux Balance Analysis (FBA) biomass reaction hinders whole-cell 

modeling.

New flexible FBA can produce subsets of biomass reactants.

Time-linked FBA removes the reactant-to-byproduct long-time assumption.

Our new methods avoid low-copy enzyme metabolic artifacts for whole-cell 

modeling.
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Figure 1. 
Flexible FBA objective and Time Step Linked Simulation diagrams. (a) Diagram of biomass 

reaction flux maximization compared to application of flexible FBA to a small example 

system with key metabolite Matp corresponding to ATP and other biomass metabolites 

generically denoted Mi. The biomass reaction flux maximization objective optimizes for the 

production of all metabolites necessarily in exact proportion (green). The flexible FBA 

objective increases ATP production (blue) with a penalty for any other process reactant 

which is produced less than proportionally (red). (b) FlexFBA objective demonstration 

showing biomass metabolite production for the wild type metabolic network, and for a 

glycogen pathway knockout compared to biomass reaction flux maximization objective for 

that knockout.
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Figure 2. 
Branched Pathway Restriction. Flex FBA objective biomass metabolite production 

compared to biomass reaction flux maximization for a 50% knockdown in aromatic amino 

acid biosynthesis immediately upstream of the branch to Phenylalanine (Phe) and Tyrosine 

(Tyr), and with additional 75% knockdown to the glycogen synthesis pathway.
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Figure 3. 
Biomass reaction FBA and tFBA time step relationship schematics and example media 

transition simulations. (a) Biomass reaction FBA diagram of relationship between 

metabolism and biomass process within and between time steps, with influence from 

simulation conditions represented as colored highlight. (b) and corresponding tFBA 

diagram. (c) Biomass reaction FBA simulation of acetate to glucose media transition at t = 

10 sec showing normalized production of biomass reactants (black open) and return of 

biomass byproducts (closed grey). Marginal ticks for process reactant production values are 

colored according to a scale of yellow to blue with the end points set as steady states of 

acetate and glucose growth respectively. (d) and corresponding tFBA simulation of acetate 

to glucose media transition.
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Figure 4. 
Flex and tFBA simulation with knockouts. Immediately after perturbation (left panels) at t > 

5 sec indicated by arrows, and in the steady state time limit (right panels). (a) Acidic 

phospholipid pathway knockout of gene pgsA. (b) Purine pathway knockout of gene purA.
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Figure 5. 
Knockout strain versus process reactant production grid for flexFBA and biomass reaction 

FBA (small grids at top), and expanded to show detail for flexFBA. Strains included are 

those experimentally categorized as essential in glucose minimal (gene) or glucose minimal 

and additionally rich media (gene bolded) by Feist et al. [24]. Simulations completed in 

glucose minimal in silico media. Production immediately following perturbation given by 

shading (dark indicating metabolite absence), steady state limit result is outline. 

Experimental evidence associated with colored key for prediction correctness is in Table S1, 

categorized as follows: `Auxotrophs' are associated with direct literature reference to the 

knockout strain requiring the absent metabolites, precursors from which they can be 

synthesized, or some combination; `Likely Auxotrophs' are associated consistent but indirect 

literature reference to the knockout strain requiring the absent metabolites or precursors 

from which they can be synthesized; `Other Agreement' indicates that the absent metabolites 

are entirely consistent with literature documentation of the gene product, but cannot be 

transported from the media to supplement an auxotrophy; `Partial Agreement' indicates that 

literature references are consistent with some of the missing metabolites, but some either are 

or fail to be produced in conflict with literature evidence; `Incorrect' predictions are those 

for which detailed metabolite production is largely inconsistent with literature biochemical 

evidence. The knockouts in Figure 4 provide additional orientation to the information 

presented.
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Figure 6. 
Low copy number enzyme expression bursts. (a) Biomass reaction and (b) flexFBA: CoA 

synthesis reaction flux bounds (dotted), and flux (solid) compared to smooth (grey). (c) 

Biomass reaction and (d) flexFBA: biomass metabolite production (solid) compared to 

smooth (grey) for all biomass metabolites excepting CoA, Succinyl-CoA and Acetly-CoA.
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